Improving Emission Estimates Through Regional Studies

Gregory R. Carmichael

University of Iowa

and a cast of MANY

burning ...

Woo et al., JGR, 2003

Streets et al., 2002

The Informatics Problem: "Chemical Mass Balance" Source Information Air Mass Markers

Model Runs w/wo Source Sectors

ΔΒC/ΔCO		Ratio	R-square
Shanghai	Obs	0.0107	0.9556
	Model	0.0092	0.8772
	Emission	0.0083	
Tianjian	Obs	0.0102	0.8266
	Model	0.0084	0.6412
	Emission	0.014	
Tokyo	Obs	0.0226	0.8793
	Model	0.0205	0.9412
	Emission	0.0193	
Pusan	Obs	-0.016	0.06351
	Model	0.0072	0.3258
	Emission	0.0159	
Qingdao	Obs	0.0186	0.02618
	Model	0.0076	0.7707
	Emission	0.0148	

This analysis suggests directions to look for improvements

Domestic/Total(%) 1 - 10 10 - 20 20 - 30 30 - 40 40 - 50 50 - 60 60 - 75 75 - 100 CO Linan BC Domestic/Total(%) 1 - 10 10 - 20 20 - 30 30 - 4040 - 50 50 - 60 60 - 7575 - 100

Is it the Domestic Sector?

Table 4. Domestic sector emissions by fuel for 2000 (annual basis). Domestic sector % of Domestic **Chemical Species** to Total Emisisons Fossil Biofuel Sum SO₂(Gg) 11 2549 1116 3665 $NO_x(Gg)$ 795 1894 7 1098 CO(Gg) 8899 95721 104621 38 $CO_2(Tg)$ 552 2132 2685 27 BC(Gg) 337 1294 1631 64 OC(Gg) 273 6746 65 6473

Table 3. Linan data

Species and Variables	Observed	
CO (ppbv)	649.26	
SO2 (ppbv)	16.49	
NOy (ppbv)	13.24	
BC (μg/m3)	3.5	
OC (μg/m3)	44	

New methodology and data

New methodology for industry, domestic and transport sector

New available activity data for 2001

Link with Control Strategy

Need to know the detail within sectors

Information from chemical modeling results

Inverse studies (using surface, aircraft data, and satellite data) for CO showing a ~40% Underestimation of Current Estimates

Q. Zhang¹, L. Wang¹, D. Streets², J. Fu³, J.Woo⁴

¹Tsinghua University, Beijing, China ²Argonne National Laboratory, Chicago, USA ³Uinversity of Tennessee, Knoxville, USA ⁴Northeast States for Coordinated Air Use Management, Boston, USA

Small Coal Mines and Small Industries

170 Million tons difference between coal supply and coal consumptions

Efficiency of Combustion Device

- Which impact BC, OC, CO and VOC emissions
- Important for control potential

- 34% higher compared with Trace-P inventory
- 73% of increase comes from industrial sector
- Key reason: low combustion efficiency
- Results in a 'consistent' regional changes
- Implications for BC, OC and VOC? the next step

NASA INTEX DC-8 flight in July

ICARTT/INTEX-A DC-8 flight 7 on 07/08/2004

Sulfate is measured by Jack Dibb, University of New Hampshire, and aerosol optical properties are measured by Antony Clarke, University of Hawaii

STEM Forecast Webpage for APMEX

http://nas.cgrer.uiowa.edu/ABC/abc-2k4.html

